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Midterm Exam II - Review
MATH 125 - Spring 2022

Midterm 2 covers Chapter 3, Sections 4.1-4.4 and 4.6
Midterm Exam 1: Tuesday 4/12, 5:50-7:50 pm in Wescoe 3140 and Strong

330

The following is a list of important concepts that will be tested on Midterm Exam 2. This is not a
complete list of the material that you should know for the course, but it is a good indication of what
will be emphasized on the exam. A thorough understanding of all of the following concepts will help you
perform well on the exam. Some places to find problems on these topics are the following: in the book,
in the slides, in the homework, on quizzes, and Achieve.

• The Basics of Derivatives: Sections 3.1-3.8

Differentiation rules for general functions f(x) and g(x).

d

dx
(f(x) + g(x)) = f ′(x) + g ′(x)

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g ′(x) (product rule)

d

dx
(f(x)− g(x)) = f ′(x)− g ′(x)

d

dx

(
f(x)

g(x)

)
=
g(x)f ′(x)− f(x)g ′(x)

g(x)2
(quotient rule)

d

dx
(c f(x)) = cf ′(x)

d

dx
(f(g(x))) = f ′(g(x))g ′(x) (chain rule)

Derivatives of particular functions.

d

dx
(c) = 0

d

dx
(ex) = ex

d

dx
(ln(x)) = 1

x

d

dx
(xn) = nxn−1 d

dx
(ax) = ax ln(a)

d

dx
(loga(x)) = 1

x ln(a)

d

dx
(sin(x)) = cos(x)

d

dx
(cos(x)) = − sin(x)

d

dx
(tan(x)) = sec2(x)

d

dx
(csc(x)) = − csc(x) cot(x)

d

dx
(sec(x)) = sec(x) tan(x)

d

dx
(cot(x)) = − csc2(x)

d

dx
(arcsin(x)) =

1√
1− x2

d

dx
(arccos(x)) =

−1√
1− x2

d

dx
(arctan(x)) =

1

1 + x2
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Much of the content on this exam requires you to differentiate a variety of functions using the rules
in the boxes above. This may include a combination of many of the above differentiation rules to
differentiate a single function. For example, you may need to use the product rule, then the chain

rule twice, and finally a quotient rule when differentiating f(x) = sin2(x) tan
(

ln(x)
x

)
.

You still need to know the interpretations of the derivative of a function as the slope of a tangent line
and the instantaneous rate of change. You should be comfortable working with these differentiation
rules for functions that are not explicitly defined. For example, you should be able to use the chain

rule to compute the derivative of F (x) = f(
√
x) as F ′(x) = f ′(

√
x)

2
√
x

.

Implicit Differentiation is an application of the Chain Rule. Given an implicit equation involving x
and y, you should be able to find dy

dx
and d2y

dx2 in term of x and y. You should be able to use dy
dx

to find
the equation of the line tangent to the curve at a point (x0, y0) defined by the implicit equation.
Implicit differentiation was used to find the derivative of the inverse trigonometric functions and
loga(x).

Whenever the variable being differentiated differs from the variable that we are differentiating with

respect to, a new derivative term is produced. For example,
d

dz
(r3) = 3r2 dr

dz
.

1. Find
dy

dx
,
dx

dy
, and

dx

dt
for the equation

(a) xy + x2y2 = 6

dy

dx
: y + x

dy

dx
+ 2xy2 + 2x2y

dy

dx
= 0

Regroup:

y + 2xy2 = −(x+ 2x2y)
dy

dx
dy

dx
= −y + 2xy2

x+ 2x2y

dx

dy
:
dx

dy
= −x+ 2x2y

y + 2xy2

dx

dt
: y

dx

dt
+ x

dy

dt
+ 2xy2dx

dt
+ 2x2y

dy

dt
= 0

dx

dt
= −

x
dy

dt
+ 2x2y

dy

dt
y + 2xy2

(b) exy = sin(y2)

dy

dx
: exy(y + x

dy

dx
) = 2 cos(y2)y

dy

dx
dy

dx
= − yexy

xexy − 2y cos(y2)

dx

dy
:
dx

dy
= −xe

xy − 2y cos(y2)

yexy

dx

dt
: exy

(
dx

dt
y + x

dy

dt

)
= 2y cos(y2)

dy

dt

dx

dt
=
−xexy dy

dt
+ 2y cos(y2)

dy

dt
yexy

2. Find the equation of the line tangent to the curve
√
x+
√
y = 5 at (9, 4).

2
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d

dx
:

1

2
√
x

+
1

2
√
y

dy

dx
= 0

dy

dx

∣∣∣∣
(9,4)

:
1

2
√
x

+
1

2
√
y

dy

dx

∣∣∣∣
(9,4)

= 0

Plug in:
1

6
+

1

4

dy

dx
= 0

Slope:
dy

dx

∣∣∣∣
(9,4)

= −2

3

Tangent: y − 4 = −2

3
(x− 9)

y = −2

3
x+ 10

3. Find
d2y

dx2
for the curve

√
x+
√
y = 5.

d

dx
:

1

2
√
x

+
1

2
√
y

dy

dx
= 0

Solve:
dy

dx
= −
√
y
√
x

= −x−1/2y1/2

d2

dx2
:

d2y

dx2
= −1

2

(
y−1/2x−1/2 dy

dx
− y1/2x−3/2

)
= −1

2

(
y−1/2x−1/2(−x−1/2y1/2)− y1/2x−3/2

)
=

1

2
(y1/2x−3/2 + x−1)

=

√
y +
√
x

2x
√
x

4. Simplify sec(arctan(x)) and then find
dy

dx
of y = arctan(x) using implicit differentiation.

sec(arctan(x)): 1

x
√

1 + x2

θ

θ = arctan(x)
so

sec(arctan(x)) = sec(θ)

=
1

cos(θ)

=
1
1√

1 + x2

=
√

1 + x2

Derivative tan(y) = x

sec2(y)
dy

dx
= 1

sec2(arctan(x))
dy

dx
= 1

(
√

1 + x2)2 dy

dx
= 1

dy

dx
=

1

1 + x2

5. Find the derivative with respect to x of the following functions:

y = ex sin(x) y =
sin(πx)

x
y =

3x− 2√
2x+ 1

y = tan2(sin(x)) y = arctan(x2 +
√
x) y = 3x ln(x)

3
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y = ex sin(x): y′ = ex sin(x)(sin(x) + x cos(x))

y =
sin(πx)

x
: y′ =

πx cos(πx)− sin(πx)

x2

y =
3x− 2√
2x+ 1

y′ =

√
2x+ 1(3)− 2(3x− 2)

2
√

2x+ 1
2x+ 1

y = tan2(sin(x)): y′ = 2 tan(sin(x)) sec2(sin(x))(cos(x))

y = arctan(x2 +
√
x): y′ =

2x+
1

2
√
x

(x2 +
√
x)2 + 1

y = 3x ln(x): y′ = 3x ln(x) ln(3) (ln(x) + 1)

6. Find a point on x3 + y3 = 3xy other than the origin at which the tangent line is horizontal.

d

dx
: 3x2 + 3y2 dy

dx
= 3y + 3x

dy

dx
dy

dx
:

Isolate: 3x2 − 3y = 3x
dy

dx
− 3y2 dy

dx

Solve:
dy

dx
= −3x2 − 3y

3y2 − 3x

dy

dx
= 0 3x2 − 3y = 0 so y = x2.

Plug in: x3 + y3 = 3xy implies x3 + x6 = 3x3

Combine: x6 − 2x3 = 0 implies x3(x3 − 2) = 0

Answer: x = 3
√

2 and y = x2 = 3
√

4

At ( 3
√

2, 3
√

4), the graph has a horizontal
tangent line.

• Logarithmic Differentiation: Section 3.9
When differentiating an expression with variables in both the base and the exponent, take the
natural logarithm of both sides, use the properties of logarithms to simplify, and then implicitly
differentiate.

aloga(x) = x and loga(a
x) = x,

loga(xy) = loga(x) + loga(y),

loga

(
x

y

)
= loga(x)− loga(y),

loga(x
y) = y loga(x).

Exercies:

4
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1. Differentiate the following using logarithmic differentiation

(a) y = x log2(x)

Product rule & log Rule:
dy

dx
= log2(x) + x

1

x ln(2)

y′ = log2(x) +
1

ln(2)

(b) y =

√
x(2x+ 3)5

(7x− 10)15
.

Logarithmic Differentiation:
Take the log of both sides:

ln(y) = ln

(√
x(2x+ 3)5

(7x+ 10)15

)

Derivative of the simplified form:

dy
dx

y
=

1

2

(
1

x
+ 5

2

2x+ 3
− 15

7

7x+ 10

)

dy

dx
=
y

2

(
1

x
+ 5

2

2x+ 3
− 15

7

7x+ 10

)

dy

dx
=

√
x(2x+ 3)5

(7x− 10)15

2

(
1

x
+ 5

2

2x+ 3
− 15

7

7x+ 10

)

or by algebra:
dy

dx
=

√
x(2x+ 3)5

4(7x− 10)15

(
1

x
+ 5

2

2x+ 3
− 15

7

7x+ 10

)

Multiply both sides by y

Simplify using the logarithmic rules:

The log of power rule: ln(y) =
1

2
ln

(
x(2x+ 3)5

(7x+ 10)15

)
The log of quotient rule:

=
1

2

(
ln

(
x(2x+ 3)5

)
− ln

(
(7x+ 10)15

))
The log of product rule:

=
1

2

(
ln(x) + ln

(
(2x+ 3)5

)
− ln

(
(7x+ 10)15

))

=
1

2

(
ln(x) + 5 ln

(
(2x+ 3)

)
− 15 ln

(
(7x+ 10)

))
︸ ︷︷ ︸

Replace y =

√
x(2x+ 3)5

(7x− 10)15

(c) y = xx
2

Logarithmic Differentiation

Log: ln(y) = x2 ln(x)

d

dx
:
y′

y
= 2x ln(x) + x2 1

x︸ ︷︷ ︸
Product Rule

Solve: y′ = (2x ln(x) + x)xx
2

(d) y = cos(x)
√
x

Logarithmic Differentiation

Take the natural log of both sides:
ln(f(x) =

√
x ln(cos(x))

Take the derivative of both sides:
f ′(x)

f(x)
=

1

2
√
x

ln(cos(x))−
√
x

sin(x)

cos(x)

Multiply both sides by y = f(x):

f ′(x) =
cos(x)

√
x

2
√
x

ln(cos(x))−
√
x

cos(x)
√
x

x
tan(x)

(e) yx = xy

Logarithmic Differentiation:

Log: x ln(y) = y ln(x)

d

dx
: ln(y) +

xy′

y︸ ︷︷ ︸
Product Rule

= y′ ln(x) +
y

x︸ ︷︷ ︸
Product Rule

Solve: y′ =

y

x
− ln(y)

x

y
− ln(x)

• Related Rates: Section 3.10
Solving a related rates problem:

Step 1) Draw a diagram of the problem and define the variables.

Step 2) Find an equation relating the variables from Step 1.

Step 3) Differentiate both sides of the equation from Step 2 with respect to t.

Step 4) Determine the known quantities given in the problem, plug them into the equation from Step
3, and solve for the unknown quantity.

Note that in Steps 1-3 the variables of the problem are changing as time progresses, but in Step 4
we plug in particular values for the variables, so they are fixed.

5
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Formulas and Concepts:

– Areas and Volumes:

Area Rectangle = Length × Width Area Circle = π× Radius2

Surface Area Sphere = 4π× Radius2 Volume Sphere = 4π
3
× Radius3

Volume Cylinder = π× Radius2× Height Volume Cone = π
3
× Radius2× Height

– Perimeters, Similar Triangles, Pythagorean’s Theorem (Distance Formula)

– Basic Trigonometric Functions and Identities.

Consider the following example: A snowball (which is spherical) melts so that its surface area
decreases at a rate of 1 cm2/min, find the rate at which the diameter decreases when the diameter
is 10 cm.

Step 1) The variables in this problem are defined

D - the diameter (in cm) of the snowball at time t.
S - the surface area (in cm2) of the snowball at time t.
dD
dt

- change in diameter per change in time (in cm/min) at time t.
dS
dt

- change in surface area per change in time (in cm2/min) at time t.

Step 2) The equation for this problem is
S = πD2.

Note that we can get this from the surface area in terms of the radius by realizing that D/2
is the radius, S = 4π(D/2)2.

Step 3) Differentiating with respect to time t, we get

dS

dt
= 2πD

dD

dt
.

Step 4) Now looking at the problem, the given values are

D = 10, S = 100π,
dD

dt
=??, and

dS

dt
= −1.

The value of dD
dt

is what we are looking for, and we can use the formula from Step 3 to find it:
plugging the values in, we get

−1 = 2π(10)
dD

dt
and hence

dD

dt
= − 1

20π
.

The diameter is decreasing at a rate of 1
20π

cm/min.

Exercises:

1. A water trough has an inverted isosceles triangle as a base. This isosceles triangle has a base
of 4 feet and a height of 3 feet. The trough is 7 feet long. Water is being siphoned out of the
trough at a rate of 5 ft3

min
. At any time t, let H be the depth and V be the volume of water in

the trough.

(a) Find a formula for the length and width of the surface of the water as a function of depth
of the water, H. (Hint: One of the two is constant.)

6
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(b) Find a formula for V as a function of H.

(c) What is the depth of the water when the trough is a quarter full by volume?

(d) What is the rate of change in H at the instant when the trough is a quarter full by volume?

(e) What is the rate of change in the area of the surface of the water at the instant when the

trough is
1

4
full by volume?

height=3

length=7

triangle base=4

(a) One side of rectangle is constant L = 7 . Let the other side be B.

By Similarity of two triangles:
H

3
=
B

4
so B =

4

3
H

H

height=3

triangle base=4

(b) Note: The area of the triangle is:

A =
1

2
(B)(H) =

(
1

2

)(
4

3
H

)
H =

2

3
H2

V = A× L = A× 7 =
2

3
(H2)× 7 =

14

3
H2

(c) The total volume of the trough=
4× 3× 7

2
. Now

1

4
of that volume is 10.5. Set

14

3
H2 = 10.5

H =

√
10.5× 3

14
= 1.5(d) Goal: to find

dH

dt
Given

dV

dt
= −5

ft3

min

Implicit Differentiation:
dV

dt
=

14

3
(2H)

dH

dt

dH

dt
=

3× (−5)

28H

dH

dt
= −0.35713

ft

min

(e) S = B × L =
28

3
H

ds

dt
=

28

3

dH

dt
=

28

3
(−0.35713) = −10

3

ft2

min

7
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2. Albert and Nora are in motorboats on a lake. Albert is 5 km west of Nora. At time t = 0,
Albert begins traveling south at a speed of 40 km/h. Five minutes later, Nora begins traveling
east at a speed of 20 km/h. At what rate is the distance between them changing at t = 10
minutes?

y
:

A
lb

e
rt

’s
d

is
ta

n
ce

fr
o
m

ce
n
te

r
o
f

th
e

la
k
e
.(

n
o
n

-c
o
n

st
a
n
t

x Nora’s distance from the center
of the lake. (non-constant)

D
:
The

di
st
an

ce
be

tw
ee

n
A
lb

er
t an

d

N
or

a
.(n

on
-c
on

st
an

t)

A×+

N×+

The distances after 10 minutes:

y(10) =
40 km/hr

60 min/hr
× 10min =

20

3
≈ 6.66666 km

and

x(10) = 5 +
20 km/hr

60 min/hr
× (10− 5) min =

20

3
≈ 6.66666 km

D(10) =
√
x(10)2 + y(10)2 ≈ 9.42807 km

Given:
dy

dt
= 40

km

hr
and

dx

dt
= 20

km

hr
.

Want to find
dD

dt

Pythagorean for variables: x2 + y2 = D2.

Differentiate: 2x
dx

dt
+ 2y

dy

dt
= 2D

dD

dt
.

Plug in: 2(6.66666)(20) + 2(6.66666)(40) = 2(9.42807)
dD

dt

Solve:
dD

dt
= 42.42644

https://youtu.be/4C4d8S9drt8 and https://youtu.be/Ce9F2 a3Svs

3. Albert is flying a kite on a string. The kite
is 120 ft above Albert’s hands’ level and the
wind is blowing the kite horizontally away
from him at 6 ft

s
. At what rate must he let

out the string when 130 ft of string has been
let out?

Let S be the length of the string and D be the horizontal dis-
tance of Albert and Kite.

Goal: Finding
ds

dt
Given: rate=6ft

s , s = 130ft and H = 120ft.

Variables: S and D. Constants: H = 120ft.

Pythagorean: D2 + 1202 = S2

Differentiate: 2D
dD

dt
= 2S

dS

dt

Plug in: 2(50)(6) = 2(130)
dS

dt

Solve:
dS

dt
=

(50)(6)

130
≈ 23× 10−1

Use
Pythagorean
to solve for D
at the instant;
1202+D2 = 1302

gives D = 50.

D (non-
constant)

H = 120
(constant)

S: length of
string and =130
ft at the instant
(Non-constant)

Moving horizontally only.

8
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4. The angle of elevation of the sun is decreas-
ing at a rate of 0.25 radians per an hour. How
fast is the shadow cast by the 75 foot tall Snow
Hall increasing when the angle of elevation of
the sun is π

6
?

tan(θ) =
75

x
and when θ = π

6
, x = 75

√
3

sec2(θ)︸ ︷︷ ︸
1

cos2(π6 )
= 4

3

0.25︷︸︸︷
dθ

dt
=

(
−75

x2

)
︸ ︷︷ ︸

−1
(75)(3)

dx

dt

dx

dt
= −75 ft/hr

x : Shadow

θ

75 ft

9
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5. A woman holding a light 1 meter above the ground is shining that light at a man who is 2
meters tall. The woman is moving at 0.8m/s approaches the man from behind. The man is
facing a wall which is 4 meters from in front of him. How fast is the tip P of the man’s shadow
moving when the woman is 3 meters from the man?

x m 4 m

P

s

h− 1 m

https://youtu.be/YEpk-F5yk6Q

x+ 4

s
=

x

h− 1
so s =

(x+ 4)(h− 1)

x
ds

dt
=
−4

x2︸︷︷︸
9

(h− 1)︸ ︷︷ ︸
2−1m

dx

dt︸︷︷︸
−0.8m/s

≈ 0.356 m/s

6. A lighthouse sits on a small island near a rocky shoreline, emitting a rotating beam of light.
The lighthouse is 5 km from the shore, and it emits a beam of light that rotates 12 times per
minute. How quickly is the end of the light beam moving along the shoreline when θ = 60◦?

Shore

Light House Island

θ
5 km

x

Light Beam

Given: At the instant θ = 60◦ =
π

3
rad. Want to Find:

dx

dt

dθ

dt
= 12

rotations

min
= 12

rotations

min
× 2π rad

1 rotation
= 24π

rad

min

Using Trigonometry: tan(θ) =
x

5
sec2(θ)

dθ

dt
=

1

5

(
dx

dt

)
︷ ︸︸ ︷
dx

dt
= 5× sec2(θ)×

(
dθ

dt

)
= 480π

km

minNote:

sec2

(
π

3

)
=

(
1

cos(π/3)

)2

= 4.0

10
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7. Water is leaking out of a tank shaped like an inverted cone at a rate of 3 m3

min
at the same time

that water is being pumped into the tank at a constant rate. The tank has height 7 meters
and the diameter at the top is 10 meters. If the water level is falling at a rate of 0.2 m

min
when

the height of the water is 2 meters,

(a) use the volume formula V =
πr2h

3
to find the rate of change in the volume of water in the

cone. (Round to 3 decimal places.)

(b) find the rate at which water is being pumped into the tank.

7 m

5 m

2 m

r

h = 7 m

R = 5 m

r
D = 2 m

Given: Radius of the cone: R = 5m (Con-
stant), Height of the cone: h = 7m(constant)
and depth of the water d = 2m (Non-
constant)
dD

dt
= 0.2

m

min
and the rate of change in volume because of the

leak=−3
m3

min

By similarity of triangles :

Solve for r:
D

h
=

r

R
=⇒ r =

D ×R
h

=⇒ r =
5D

7

At the instant where D = 2, =⇒ r =
10

7

(a)

Relate the volume to depth: V (D) =
πr2D

3

Substitute r by a function of D: V (D) =
(5D

7
)2D

3
=⇒ V (D) =

25πD3

147

Differentiate:
dV

dt
=

25πD2

49

(
dD

dt

)

Substitute the values
dV

dt
=

25π(22)

49
(−0.2) = −20π

49
≈ −1.28

m3

min

(b)
dV

dt
= ratein − rateout

−20π

49
= ratein − 3 =⇒ ratein = 3− 20π

49
≈ 1.72

m3

min

Note that for this problem it is important to solve r as a function ofD and then differentiate.

11
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• Approximating with Tangent Lines: Section 4.1
You should know how to work with linear approximations and differentials.

– Given a function f(x), the linear approximation for f(x) at x = a is the line tangent to f(x)
at a. That is, the linear approximation of f(x) at x = a is

La(x) = f(a) + f ′(a)(x− a)

This is the line that best approximates the function f(x) when x is “near” a.

– Given a function y = f(x), the differential dy is defined dy = f ′(x)dx. Although it is not
technically correct, you can think of this as “multiplying both sides” of dy

dx
= f ′(x) by dx. In

this situation dx represents a small change in x and dy represents the approximate resulting
small change in y.

∗ Be able to use differentials to approximate the values of certain functions.

∗ Be able to use differentials to absolute and relative error.

1. Approximate the value of
√

10001.

The function to use f(x) =
√
x and we use the tangent line at point a = 10000 and ∆x = 1:

y = f(a) + f ′(a)∆x =⇒ L(10000)(x) = f(10000) + f ′(10000)(10001− 10000) =⇒
f ′(x)=

1

2
√
x

y =
√

10000 +
1

2
√

10000
(1) = 100 +

1

2(100)
(1)

f(10001) ≈ 100.005

2. Estimate f(2.1) if f(2) = 1 and f ′(2) = 3; is it an over or under estimate if f ′′(2) = −2?

f(2.1) ≈ L(2)(x) = f(2) + f ′(2)(x− 2)

f(2.1) ≈ L(2)(2.1) = f(2) + f ′(2)(2.1− 2) = 1 + 3(0.1) = 1.3

f ′′(2) = −2 < 0 / so the tangent line is above the graph and tangent line is over-estimating.

-

3. Five Star Pizza claims that their pizzas are circular with a diameter of 50cm. Estimate the
quantity of pizza lost or gained if the diameter is off by at most 1.2cm.

50 cm

– d = 50 ∆d = ±1.2

– A(d) =
πd2

4
and A′(d) =

πd

2
– ∆A ≈ dA = A′(50)︸ ︷︷ ︸

25π

∆d︸︷︷︸
±1.2

= ±30π cm2

12
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4. The radius of a spherical ball is measured at r = 15cm. If the ball is to be painted, covering
the ball in 0.3cm of paint, use differentials to estimate the amount of paint used on the ball.

r

V =
4πr3

3
=⇒

Derivative

dV

dt
= 4πr2

∆V ≈ dV = π(4)(15)2︸ ︷︷ ︸
V (15)

(0.3)︸︷︷︸
∆r

= 270π unit3

5. The radius of a sphere was measured and found to be 21 cm with a possible error in mea-
surement of at most 0.05 cm. What is the maximum error in using this value of the radius to
compute the surface area of the sphere?

r = 21 and dr = ±0.05

SA(r) = 4πr2 so SA′(r) = 8πr

dSA = 8π(21)︸ ︷︷ ︸
SA′(21)

(±0.05)︸ ︷︷ ︸
∆r

= 8.4 cm2

6. The dosage D of diphenhydramine for a dog of body mass w kg is D = 4.7w
2
3 mg. Estimate

the maximum allowable error in w for a dog of mass w = 10kg if the percentage error in D
must be less than 3%.

– D(w) = 4.7w2/3 mg

– D′(w) = 3.13w−1/3

– dD = D′dw

– D(10) = 21.82 mg

– D′(10) = 1.45 mg

– ±0.03 = Relative ErrorRelative Error
dD

D(10)
=
D′(10)∆w

D(10)

– ∆w =
±0.03D(10)

D′(10)
= ±0.45 kg

13
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• The Shape of a Curve: Sections 4.2-4.4
Be familiar with the definition of the following: Increasing, decreasing, absolute maximum/minimum
value, local maximum/minimum value, and critical number. Be sure that you are aware of the dif-
ference between a maximum/minimum value and the point at which the maximum/minimum value
occurs; the first derivative test is the most common method of verifying local extrema.

(Fermat) If f(c) is a local extrema and f is differentiable, then f ′(c) = 0.

∗ Local extrema occur at critical points.

∗ Not all critical points are at local extrema, but all local extrema occur at critical points.

∗ Finding critical points is how we locate local extrema.

(Extreme Value) If f is continuous on a closed interval [a, b], then f has an absolute maximum and an absolute
minimum on [a, b].

∗ You can find the absolute extrema by following the Closed Interval Method.

(Mean Value) If f is differentiable on (a, b) and continuous on [a, b], then there exists c in (a, b) where

f ′(c) =
f(b)− f(a)

b− a

∗ For a differentiable function on an interval, there always exists a point whose instantaneous
rate of change equals the average rate of change.

(2nd Derivative) Suppose f ′′ is continuous near c and f ′(c) = 0. If f ′′(c) > 0 then c is a local minimum of f
and if f ′′(c) < 0 then c is a local maximum of f .

Given a function f , be able to find intervals where f falls into one of the following categories and
identify the shape of the graph there:

f is increasing and concave down

f ′(x) > 0 and f ′′(x) < 0

f is decreasing and concave down

f ′(x) < 0 and f ′′(x) < 0

f is decreasing and concave up

f ′(x) < 0 and f ′′(x) > 0

f is increasing and concave up

f ′(x) > 0 and f ′′(x) > 0

14
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Exercises:

1. Suppose f(2) = 1 and f ′(x) ≥ 3 for all x. What is the smallest that f(6) can be?

Write the statement of MVT:

f is differentiable on [2, 6] so the re exists an x-value c such that
f(6)− f(2)

6− 2
= f ′(c)

Use the bounds for f ′:

3 ≤ f ′(x) =⇒ 3 ≤ f ′(c) =⇒ 3 ≤ f(6)− f(2)

6− 2

Replace the value for f(2) : 3 ≤ f(6)− 1

4
=⇒ 3 ≤ f(6)− 1

4
Solve the inequality:

3 ≤ f(6)− 1

4
=⇒ (4)(3) + 1 ≤ f(6) =⇒ 13 ≤ f(6)

2. Prove that c = 4 is the largest real root of f(x) = x4 − 8x2 − 128.

f ′(x) = 4x3 − 16x = 4x(x− 2)(x+ 2) and x = 0,−2, 2 are the critical points.

By the way of contradiction, let m > 4 be a larger zero. Then by MVT,
f(m)− f(4)

m− 4
=

f ′(c) for 4 < c < m. But f(m)− f(4) = 0− 0 = 0 so f ′(c) = 0 but that is not possibe.

3. Find the extreme values of f(x) = 2x3 − 9x2 + 12x on [0, 2] and then on [0, 3].

f ′(x) = 6x2 − 18x+ 12 = 6(x− 2)(x− 1) so c.p: x = 1, 2
Points x f(x) Classification

End Point 0 f(0) = 0 Absolute Min

End Point 2 f(2) = 4

Critical Point 1 f(1) = 5 Absolute Max

Points x f(x) Classification

End Point 0 f(0) = 0 Absolute Min

End Point 3 f(3) = 9 Absolute Max

Critical Point 1 f(1) = 5

4. Find the critical points of f(x) = sin(x) + cos(x) and determine the extreme values of f on[
0, 3π

4

]
.

C.P: f ′(x) = cos(x) − sin(x) and cos(x) = sin(x) implies tan(x) = 1. General solution is

x =
π

4
+ kπ but only

π

4
is the only one in the domain.

IVT:

Points x f(x) Classification

End Point 0 1

End Point
3π

4
0 Absolute Min

Critical Point
π

4

√
2 Absolute Max

15
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5. Suppose f ′′ is continuous everywhere.

(a) If f ′(2) = 0 and f ′′(2) = −5, what can you say about f?

f ′′(2) = −5 / at a critical point, it means local max.

(b) If f ′(6) = 0 and f ′′(6) = 0, what can you say about f?

f ′′(6) = 0 means the second derivative is inconclusive.

6. Let f(x) = x
1
3 (8 + x).

(a) Verify that f ′(x) =
4

3

(
x+ 2

x
2
3

)

=⇒
Distribute the original

f(x) = 8x
1
3 + x

4
3 =⇒

Take the derivative:
f ′(x) =

8

3
x−

2
3 +

4

3
x

1
3 =⇒

Factor:
f ′(x) =

4

3
x
−2
3 (2 + x)

=⇒
Rewrite the negative exponent:

f ′(x) =
4

3

(
x+ 2

x
2
3

)
(b) Identify and classify the local extrema of f(x).

Find the critical values:
f ′(x) = 0 =⇒ x = −2

f ′ does not exists =⇒ x = 0

Use the first derivative test :

−2 0

+ +-

Local min.

Plug in the original to find y-value: f(−2) = 8(−2)1/3 + (−2)4/3 = −6 3
√

2

Local Min: (−2,−6
3
√

2)

(c) Find the absolute extrema of f(x) on the interval [−27, 0].

Check the Extreme Value Theorem conditions: f is continuous everywhere and
the interval is closed so we can use the theorem.

List and check all critical values within the interval and the end points.
0︸︷︷︸

f(0)= 0
Neither

, −2︸︷︷︸
f(−2)= −6

3
√

2
Smallest

, −27︸︷︷︸
f(−27)= 57

Largest

16
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Find the absolute Extrema

The absolute minimum point is (−2,−6
3
√

2) .

The absolute Maximum point is (−27, 57) .

Video of a Similar Problem: https://mediahub.ku.edu/media/t/0 e8semsg1

17
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7. The Shape of a Curve: Sections 4.2-4.4, 4.6
Be familiar with the definition of the following: Increasing, decreasing, absolute maximum/minimum
value, local maximum/minimum value, and critical number. Be sure that you are aware
of the difference between a maximum/minimum value and the point at which the maxi-
mum/minimum value occurs; the first derivative test is the most common method of verifying
local extrema.

(Fermat) If f(c) is a local extrema and f is differentiable, then f ′(c) = 0.

∗ Local extrema occur at critical points.

∗ Not all critical points are at local extrema, but all local extrema occur at critical
points.

∗ Finding critical points is how we locate local extrema.

(Extreme Value) If f is continuous on a closed interval [a, b], then f has an absolute maximum and an
absolute minimum on [a, b].

∗ You can find the absolute extrema by following the Closed Interval Method.

(Mean Value) If f is differentiable on (a, b) and continuous on [a, b], then there exists c in (a, b) where

f ′(c) =
f(b)− f(a)

b− a

∗ For a differentiable function on an interval, there always exists a point whose instan-
taneous rate of change equals the average rate of change.

(2nd Derivative) Suppose f ′′ is continuous near c and f ′(c) = 0. If f ′′(c) > 0 then c is a local minimum of
f and if f ′′(c) < 0 then c is a local maximum of f .

Given a function f , be able to find intervals where f falls into one of the following categories
and identify the shape of the graph there:

f is increasing and concave down

f ′(x) > 0 and f ′′(x) < 0

f is decreasing and concave down

f ′(x) < 0 and f ′′(x) < 0

f is decreasing and concave up

f ′(x) < 0 and f ′′(x) > 0

f is increasing and concave up

f ′(x) > 0 and f ′′(x) > 0

18
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Exercise: Sketch the graph of the following functions, noting:

(i) the domain,

(ii) intervals on which the function increases or decreases,

(iii) intervals on which the function is concave up or down,

(iv) local extreme points, (v) inflection points,

(vi) horizontal and vertical asymptotes.

(a) f(x) = x
7
3 − 7x

4
3

Domain: (−∞,∞). Vertical or Horizontal Asym-
potes: None.

Derivatives:

f ′(x) =
7

3
x

4
3 − (7)

(
4

3

)
x

1
3

f ′(x) =
7

3
x

1
3︸︷︷︸

Factor

(x− 4).

f ′(x) = 0 or f ′ DNE =⇒ x = 0 or
x = 4.

f ′′(x) =
28

3
x

1
3 − (1)

(
28

3

)
x
−2
3

f ′′(x) =
28

3
x
−2
3︸ ︷︷ ︸

Factor

(x− 1).

f ′′(x) = 0 or f ′′ DNE =⇒ x = 0 or
x = 1.

f ′′

0

f”=0

1

−
3
.0

T
e
s
t

p
o
in

t
(
f
′′
)

-

0
.5

T
e
s
t

p
o
in

t
(
f
′′
)

-
5
.0

T
e
s
t

p
o
in

t
(
f
′′
)

+

0

f”=0 or DNE

1

f”=0 or DNE

f ′

DNE

0

f’=0

4

−
3
.0

T
e
s
t

p
o
in

t
(
f
′′
)

+

3
.0

T
e
s
t

p
o
in

t
(
f
′′
)

-

5
.0

T
e
s
t

p
o
in

t
(
f
′′
)

+

0

f’=0 or DNE

4

f’=0 or DNE
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Interval of Increasing : (−∞, 0) and
(4,∞)

Interval of Decreasing :(0, 4)

Local max: (0, 0)

Local Min: (4,−19
≈

)

Concave up: (1,∞)

Concave down: (−∞, 0) and (0, 1)

Inflection Point: (1,−6)

x

y

(4,-19)

(1,-6)

(0,0) (7, 0)

(−1,−8)

Derivative does not exist and a local max.

Derivative exists and a local min.

Point of inflection.

(b) f(x) =
5x

x2 + 3

Derivatives:

f ′(x) =
5(3− x2)

(x2 + 3)2
f ′′(x) =

10x(x2 − 9)

(x2 + 3)3

Domain: Set x2 + 3 = 0 to exclude points. No roots so Domain is R or (−∞,∞)

The vertical asymptotes and horizontal asymptotes of f : No vertical asymptote
because of previous part. Find the limits at infinities for horizontal asymptotes.
lim

x→±∞
f(x) = 0 =⇒ y = 0 is a horizontal asymptote.

i.

Intervals is f increasing? decreasing: Increasing on (−
√

3,
√

3) . Decreasing on

(−∞,−
√

3), (
√

3,∞)

20
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−
√

3
√

3

– –+
f ′

Intervals of concavity: Upward: (−3, 0), (3,∞), Downward: (−∞,−3), (0, 3)

−3 30

– –
+

f ′′
+

f ′′

Local maximum or local minimum, and inflection: Local max: (
√

3,
5
√

3

6
) , Local

Min: (−
√

3,
−5
√

3

6
) Inflection points: (−3,−1.25), (3, 1.25) and (0, 0)

Sketch:

x

y

(−
√
3,
−5
√
3

6
)

(
√
3,
−5
√

3

6
)

(−3,−1.25)

(3, 1.25)

(c) f(x) = ln(x2 + 2x+ 5)

Domain:

Note: x2 +2x+5 = 0 has no real root,

so domain is (−∞,∞)

Asymptotes

Note: x2 + 2x+ 5 = 0 has no real root

so no vertical asymtotes.

No horizontal asymptotes because lim-
its as x→ ±∞ is ∞.

First Derivative

f ′(x) =
2x+ 2

x2 + 2x+ 5

Critical Value: x = −1

Second Derivative

f ′′(x) =
−(2(x2 + 2x− 3))

(x2 + 2x+ 5)2

Values of Interest: x = 1 and x = −3
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f ′′

f”(x)=0

−3

f”(x)=0

1

−
4

T
e
s
t

p
o
in

t
(
f
′′
)

-

−
2

T
e
s
t

p
o
in

t
(
f
′′
)

+

0
T
e
s
t

p
o
in

t
(
f
′′
)

+

2
T
e
s
t

p
o
in

t
(
f
′′
)

-

1

f”=0 or DNE

−3

f”=0 or DNE

f ′

f’(0)=0

−1

−
4

T
e
s
t

p
o
in

t
(
f
′′
)

-

0
T
e
s
t

p
o
in

t
(
f
′′
)

+

2
T
e
s
t

p
o
in

t
(
f
′′
)

+

−
2

T
e
s
t

p
o
in

t
(
f
′′
)

-

−1

f’=0 or DNE

Interval of Increasing : (−1,∞)

Interval of Decreasing : (−∞,−1)

Local max: None

Local Min: (−1, ln(4))

Concave up: (−3, 1)

Concave down: (−∞,−3) and (1,∞)

Inflection Point: (−3, ln(8)) and
(1, ln(ln(8))

x

y

Derivative exists and a local min.

Point of inflection. Point of inflection.
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